3n^2+19=363

Simple and best practice solution for 3n^2+19=363 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n^2+19=363 equation:



3n^2+19=363
We move all terms to the left:
3n^2+19-(363)=0
We add all the numbers together, and all the variables
3n^2-344=0
a = 3; b = 0; c = -344;
Δ = b2-4ac
Δ = 02-4·3·(-344)
Δ = 4128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4128}=\sqrt{16*258}=\sqrt{16}*\sqrt{258}=4\sqrt{258}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{258}}{2*3}=\frac{0-4\sqrt{258}}{6} =-\frac{4\sqrt{258}}{6} =-\frac{2\sqrt{258}}{3} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{258}}{2*3}=\frac{0+4\sqrt{258}}{6} =\frac{4\sqrt{258}}{6} =\frac{2\sqrt{258}}{3} $

See similar equations:

| 5x+7+18x+48=180 | | x+2x+4x+8x+16x+32x+64x=100 | | –2=5x+4-2x+3 | | 4n-7=6 | | 2(2x+4)=-(3x+20) | | 2x+4*x=96 | | k−(−5/6)=−61​ | | 180=2x+x+(x-20) | | 62-x=74 | | 2x2+6x=11 | | 2z+2z+7,5=13 | | 5x+24+13x+2+8x-3+7x+7=180 | | -8x-14=-49 | | 16x-15=19x-18 | | (15x-26)+26=180 | | 8x-122=7x-97 | | 34-8x=12 | | )5(x-7.2)=14.5 | | 4x+3=–21 | | 2x26x=11 | | 6=6/i | | 2(x-4.65)=5x | | -2x^2-4x+96=0 | | 6x+2=23x-37 | | (4/3)(x)=(28/3) | | 2(1-7k)=3k-32 | | 7{x-4}=3x+8 | | 2x+6=2+3x | | 13x-4=7 | | n3/4=1/3 | | -6(-8x-1)=6(1-2x) | | 8(x+1)=12(x-4) |

Equations solver categories